T.B.C.: B-GTD-O-NDB

Serial No.

TEST BOOKLET
MECHANICAL ENGINEERING
Paper—II

Time Allowed: Two Hours
Maximum Marks: 200

INSTRUCTIONS

1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.

2. Please note that it is the candidate's responsibility to encode and fill in the Roll Number and Test Booklet Series Code A, B, C or D carefully and without any omission or discrepancy at the appropriate places in the OMR Answer Sheet. Any omission/discrepancy will render the Answer Sheet liable for rejection.

3. You have to enter your Roll Number on the Test Booklet in the Box provided alongside. DO NOT write anything else on the Test Booklet.

4. This Test Booklet contains 120 items (questions). Each item comprises four responses (answers). You will select the response which you want to mark on the Answer Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.

5. You have to mark your responses ONLY on the separate Answer Sheet provided. See directions in the Answer Sheet.

6. All items carry equal marks.

7. Before you proceed to mark in the Answer Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per instructions sent to you with your Admission Certificate.

8. After you have completed filling in all your responses on the Answer Sheet and the examination has concluded, you should hand over to the Invigilator only the Answer Sheet. You are permitted to take away with you the Test Booklet.

9. Sheets for rough work are appended in the Test Booklet at the end.

10. Penalty for wrong answers:
 THERE WILL BE PENALTY FOR WRONG ANSWERS MARKED BY A CANDIDATE.
 (i) There are four alternatives for the answer to every question. For each question for which a wrong answer has been given by the candidate, one-third (0.33) of the marks assigned to that question will be deducted as penalty.
 (ii) If a candidate gives more than one answer, it will be treated as wrong answer even if one of the given answers happens to be correct and there will be same penalty as above to that question.
 (iii) If a question is left blank, i.e., no answer is given by the candidate, there will be no penalty for that question.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO
1. In a crank and slotted lever type quick return mechanism, the link moves with an angular velocity of 20 rad/s, while the slider moves with a linear velocity of 1.5 m/s. The magnitude and direction of Coriolis component of acceleration with respect to angular velocity are

(a) 30 m/s² and direction is such as to rotate slider velocity in the same sense as the angular velocity

(b) 30 m/s² and direction is such as to rotate slider velocity in the opposite sense as the angular velocity

(c) 60 m/s² and direction is such as to rotate slider velocity in the same sense as the angular velocity

(d) 60 m/s² and direction is such as to rotate slider velocity in the opposite sense as the angular velocity

3. The displacement of a follower of a cam in a printing machine is represented by the expression

\[x = 10\theta + 120\theta^2 - 1500\theta^3 + 20000\theta^4 + 25000\theta^5 \]

where \(\theta \) is the angle of rotation of the cam. The jerk given by the system is at any position is

(a) \(9000\omega^3 + 4800\omega^3 \theta + 150000\theta^2 \theta^2 \)

(b) \(9000\omega^3 \)

(c) \(240\omega^2 + 9000\omega^2 \theta + 24000\omega^2 \theta^2 + 50000\omega^3 \theta^3 \)

(d) \(48000\omega^3 \theta + 150000\omega^3 \theta^2 \)

4. A body starting from rest moves in a straight line with its equation of motion being

\[s = 2t^3 - 3t^2 + 2t + 1 \]

where \(s \) is displacement in m and \(t \) is time in s. Its acceleration after one second is

(a) 6 m/s²
(b) 2 m/s²
(c) 12 m/s²
(d) 3 m/s²

5. The crankshaft of a reciprocating engine having a 20 cm crank and 100 cm connecting rod rotates at 210 r.p.m. When the crank angle is 45°, the velocity of piston is nearly

(a) 1.8 m/s
(b) 1.9 m/s
(c) 18 m/s
(d) 19 m/s

6. While designing a cam, pressure angle is one of the most important parameters which is directly proportional to

(a) pitch circle diameter
(b) prime circle diameter
(c) lift of cam
(d) base circle diameter

2. Which of the following are associated with Ackerman steering mechanism used in automobiles?

1. Has both sliding and turning pairs

2. Less friction and hence long life

3. Mechanically correct in all positions

4. Mathematically not accurate except in three positions

5. Has only turning pairs

6. Controls movement of two front wheels

(a) 2, 4, 5 and 6
(b) 1, 2, 3 and 6
(c) 2, 3, 5 and 6
(d) 1, 2, 3 and 5
7. A four-bar mechanism is as shown in the figure below. At the instant shown, AB is shorter than CD by 30 cm. AB is rotating at 5 rad/s and CD is rotating at 2 rad/s:

![Diagram of a four-bar mechanism]

The length of AB is:

(a) 10 cm (b) 20 cm
(c) 30 cm (d) 40 cm

8. A governor is said to be isochronous when the equilibrium speed is

(a) variable for different radii of rotation of governor balls
(b) constant for all radii of rotation of the balls within the working range
(c) constant for particular radii of rotation of governor balls
(d) constant for only one radius of rotation of governor balls

9. A planetary gear train is a gear train having

(a) a relative motion of axes and the axis of at least one of the gears also moves relative to the frame
(b) no relative motion of axes and no relative motion of axes with respect to the frame
(c) no relative motion of axes and the axis of at least one of the gears also moves relative to the frame
(d) a relative motion of axes and none of the axes of gears has relative motion with the frame

10. The flywheel of a machine having weight of 4500 kg and radius of gyration of 2 m has cyclic fluctuation of speed from 125 r.p.m. to 123 r.p.m. Assuming $g = 10 \text{m/s}^2$, the maximum fluctuation of energy is

(a) 12822 N-m (b) 24200 N-m
(c) 14522 N-m (d) 12100 N-m

11. Alumina doped with magnesia will have reduced thermal conductivity because its structure becomes

(a) amorphous (b) free of pores
(c) crystalline (d) mixture of crystalline and glass

12. Which of the following statements are associated with complete dynamic balancing of rotating systems?

1. Resultant couple due to all inertia forces is zero.
2. Support reactions due to forces are zero but not due to couples
3. The system is automatically statically balanced.
4. Centre of masses of the system lies on the axis of rotation.

(a) 1, 2, 3 and 4
(b) 1, 2 and 3 only
(c) 2, 3 and 4 only
(d) 1, 3 and 4 only

13. Which of the following statements is correct about the balancing of a mechanical system?

(a) If it is under static balance, then there will be dynamic balance also
(b) If it is under dynamic balance, then there will be static balance also
(c) Both static as well as dynamic balance have to be achieved separately
(d) None of the above
14. The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that
 (a) its natural frequency is very low in comparison to the frequency of vibration
 (b) its natural frequency is very high in comparison to the frequency of vibration
 (c) its natural frequency is equal to the frequency of vibration
 (d) measurement of vibratory motion is without any reference point

15. As compared to the time period of a simple pendulum on the earth, its time period on the moon will be
 (a) 5 times higher
 (b) 5 times lower
 (c) \(\sqrt{6} \) times higher
 (d) \(\sqrt{6} \) times lower

16. While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding \(X \) times its value to the mass, where \(X \) is
 (a) \(\frac{1}{2} \)
 (b) \(\frac{1}{3} \)
 (c) \(\frac{1}{4} \)
 (d) \(\frac{3}{4} \)

17. A block of mass 10 kg is placed at the free end of a cantilever beam of length 1 m and second moment of area 300 mm\(^4\). Taking Young's modulus of the beam material as 200 GPa, the natural frequency of the system is
 (a) \(30\sqrt{2} \) rad/s
 (b) \(2\sqrt{3} \) rad/s
 (c) \(3\sqrt{2} \) rad/s
 (d) \(20\sqrt{3} \) rad/s

18. The speed rating for turbine rotors is invariably more than \(\sqrt{2} \) times its natural frequency to
 (a) increase stability under heavy load and high speed
 (b) isolate vibration of the system from the surrounding
 (c) minimize deflection under dynamic loading as well as to reduce transmissibility of force to the surrounding
 (d) None of the above

19. The magnitude of swayng couple due to partial balance of the primary unbalancing force in locomotive is
 (a) inversely proportional to the reciprocating mass
 (b) directly proportional to the square of the distance between the centrelines of the two cylinders
 (c) inversely proportional to the distance between the centrelines of the two cylinders
 (d) directly proportional to the distance between the centrelines of the two cylinders

20. The power of a governor is the work done at
 (a) the governor balls for change of speed
 (b) the sleeve for zero change of speed
 (c) the sleeve for a given rate of change of speed
 (d) each governor ball for given percentage change of speed
21. Consider the following:
The parallel fillet welded joint is designed for
1. tensile strength
2. compressive strength
3. bending strength
4. shear strength
Which of the above is/are correct?
(a) 4 only
(b) 3 only
(c) 2 and 3
(d) 1 and 4

22. If the permissible crushing stress for the material of a key is double the permissible shear stress, then the sunk key will be equally strong in shearing and crushing if the key is a
(a) rectangular key with width equal to half the thickness
(b) rectangular key with width equal to twice the thickness
(c) square key
(d) rectangular key with width equal to one-fourth the thickness

23. Very small quantity of carbon in iron as in steels forms interstitial solid solution mainly because atomic size(s) of
(a) carbon and iron are almost same
(b) iron is very much smaller than that of carbon
(c) carbon is very much smaller than that of iron
(d) None of the above

24. In a cotter joint, the width of the cotter at the centre is 5 cm, while its thickness is 1.2 cm. The load acting on the cotter is 62 kN. The shear stress developed in the cotter is
(a) 50 N/mm²
(b) 100 N/mm²
(c) 120 N/mm²
(d) 200 N/mm²

25. The use of straight or curved external gear teeth in mesh with internal teeth in "gear and spline couplings" is specifically employed to accommodate
(a) torsional misalignment
(b) parallel misalignment
(c) angular misalignment
(d) substantial axial movements between shafts

26. For a power screw having square threads with lead angle of 45° and coefficient of friction of 0.15 between screw and nut, the efficiency of the power screw, neglecting collar friction, is given by
(a) 74% (b) 64%
(c) 54% (d) 44%

27. Aquaplaning occurs in vehicle tyres when there is continuous film of fluid between the tyre and the wet road. It leads to
(a) oscillatory motion of the vehicle
(b) jamming the brakes of the vehicle
(c) jamming the steering mechanism of the vehicle
(d) loss of control of the vehicle

28. If the angle of wrap on smaller pulley of diameter 250 mm is 120° and diameter of larger pulley is twice the diameter of smaller pulley, then the centre distance between the pulleys for an open belt drive is
(a) 1000 mm (b) 750 mm
(c) 500 mm (d) 250 mm

29. If the velocity ratio for an open belt drive is 8 and the speed of driving pulley is 300 r.p.m., then considering an elastic creep of 2% the speed of the driven pulley is
(a) 104.04 r.p.m.
(b) 102.04 r.p.m.
(c) 100.04 r.p.m.
(d) 98.04 r.p.m.
30. Two shafts A and B are of same material, and A is twice the diameter of B. The torque that can be transmitted by A is
(a) 2 times that of B
(b) 8 times that of B
(c) 4 times that of B
(d) 6 times that of B

31. A worm gear set is designed to have pressure angle of 30° which is equal to the helix angle. The efficiency of the worm gear set at an interface friction of 0.05 is
(a) 87.9%
(b) 77.9%
(c) 67.9%
(d) 57.9%

32. Consider the following statements:
 The axes of spiral bevel gear are non-parallel and intersecting.
 1. The most common pressure angle for spiral bevel gear is 20°.
 2. The most common spiral angle for spiral bevel gear is 35°.
 3. Spiral bevel gears are generally interchangeable.
 4. Spirals are noisy and recommended for low speeds of 10 m/s.
Which of the above statements are correct?
(a) 1 and 4
(b) 1 and 2
(c) 2 and 3
(d) 3 and 4

33. Consider the following statements:
 In case of helical gears, teeth are cut at an angle to the axis of rotation of the gears.
 1. Helix angle introduces another ratio called axial contact ratio.
 2. Transverse contact ratio is equal to axial contact ratio in helical gears.
 3. Large transverse contact ratio does not allow multiple teeth to share the load.
 4. Large axial contact ratio will cause larger axial force component.
Which of the above statements are correct?
(a) 1 and 2
(b) 2 and 3
(c) 1 and 4
(d) 3 and 4

34. In an interference fit between a shaft and a hub, the state of stress in the shaft due to interference fit is
 (a) only compressive radial stress
 (b) a tensile radial stress and a compressive tangential stress
 (c) a compressive tangential stress and a compressive radial stress
 (d) a compressive tangential stress and a compressive radial stress
35. In case the number of teeth on two bevel gears in mesh is 30 and 60 respectively, then the pitch cone angle of the gear will be

(c) \(\tan^{-1} 2 \)

(l) \(\frac{\pi}{2} + \tan^{-1} 2 \)

(c) \(\frac{\pi}{2} - \tan^{-1} 0.5 \)

(c) \(\tan^{-1} 0.5 \)

36. In skew bevel gears, the axes are

(a) non-parallel and non-intersecting, and teeth are curved

(b) non-parallel and non-intersecting, and teeth are straight

(c) intersecting, and teeth are curved and oblique

(d) intersecting, and teeth are curved and can be ground

38. Consider the following statements in connection with thrust bearings:

1. Cylindrical thrust bearings have higher coefficient of friction than ball thrust bearings.

2. Taper rollers cannot be employed for thrust bearings.

3. Double-row thrust ball bearing is not possible.

4. Lower race, outer race and retainer are readily separable in thrust bearings.

Which of the above statements are correct?

(a) 1 and 2

(b) 2 and 3

(c) 3 and 4

(d) 1 and 4

39. The behaviour of metals in which strength of a metal is increased and the ductility is decreased on heating at a relatively low temperature after cold-working is known as

(a) clustering

(b) strain aging

(c) twinning

(d) screw dislocation

40. If the equivalent load in case of a radial ball bearing is 500 N and the basic dynamic load rating is 62500 N, then \(L_{10} \) life of this bearing is

(a) 1,953 million of revolutions

(b) 3,765 million of revolutions

(c) 6,958 million of revolutions

(d) 9,765 million of revolutions
41. A copper rod of 2 cm diameter is completely encased in a steel tube of inner diameter 2 cm and outer diameter 4 cm. Under an axial load, the stress in the steel tube is 100 N/mm². If $E_s = 2E_c$, then the stress in the copper rod is

(a) 50 N/mm²
(b) 33.33 N/mm²
(c) 100 N/mm²
(d) 300 N/mm²

42. A system under biaxial loading induces principal stresses of 100 N/cm² tensile and 50 N/cm² compressive at a point. The normal stress at that point on the maximum shear stress plane is

(a) 75 N/cm² tensile
(b) 50 N/cm² compressive
(c) 100 N/cm² tensile
(d) 25 N/cm² tensile

43. In a biaxial state of stress, normal stresses are $\sigma_x = 900$ N/mm², $\sigma_y = 100$ N/mm² and shear stress $\tau = 300$ N/mm². The maximum principal stress is

(a) 800 N/mm²
(b) 900 N/mm²
(c) 1000 N/mm²
(d) 1200 N/mm²

44. A constitutional diagram shows relationship among which of the following combinations in a particular alloy system?

(a) Temperature and composition
(b) Temperature and phases present
(c) Temperature, composition and phases present
(d) Temperature and pressure

45. The state of stress at a point in a body is given by $\tau_x = 100$ MPa and $\sigma_y = 200$ MPa. One of the principal stresses $\sigma_1 = 250$ MPa. The magnitudes of the other principal stress and the shearing stress τ_{xy} are respectively

(a) 50√3 MPa and 50 MPa
(b) 100 MPa, $\sigma_1 = 50\sqrt{3}$ MPa
(c) 50 MPa and 50√3 MPa
(d) 50√3 MPa and 100 MPa

45. Consider the following statements regarding powder metallurgy:

1. Refractory materials made of tungsten can be manufactured easily.
2. In metal powder control of grain size results in relatively much uniform structure.
3. The powder heated in die or mold at high temperature is then pressed and compacted to get desired shape and strength.
4. In sintering, the metal powder is gradually heated resulting in coherent bond.

Which of the above statements are correct?

(a) 1, 2 and 3 only
(b) 1 and 4 only
(c) 2, 3 and 4 only
(d) 1, 2, 3 and 4
47. The magnitudes of principal stresses at a point are 250 MPa tensile and 150 MPa compressive. The magnitudes of the shearing stress on a plane on which the normal stress is 200 MPa tensile and the normal stress on a plane at right angle to this plane are

(a) $50\sqrt{7}$ MPa and 100 MPa (tensile)
(b) 100 MPa and 100 MPa (compressive)
(c) $50\sqrt{7}$ MPa and 100 MPa (compressive)
(d) 100 MPa and $50\sqrt{7}$ MPa (tensile)

48. The state of stress at a point is given by $\sigma_x = 100$ MPa, $\sigma_y = -50$ MPa and $\tau_{xy} = 100$ MPa. The centre of Mohr's circle and its radius will be

(a) $(\sigma_x = 75$ MPa, $\sigma_y = 0$) and 75 MPa
(b) $(\sigma_x = 25$ MPa, $\sigma_y = 0$) and 125 MPa
(c) $(\sigma_x = 25$ MPa, $\sigma_y = 0$) and 150 MPa
(d) $(\sigma_x = 75$ MPa, $\sigma_y = 0$) and 125 MPa

49. Consider the following statements related to Mohr's circle for stresses in case of plane stress:

1. The construction is for variations of stress in a body.
2. The radius of the circle represents the magnitude of the maximum shearing stress.
3. The diameter represents the difference between the two principal stresses.

Which of the above statements are correct?

(a) 1, 2 and 3
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1 and 2 only

50. The figure shows a steel piece of diameter 20 mm at A and C, and 10 mm at B. The lengths of three sections A, B and C are each equal to 20 mm. The piece is held between two rigid surfaces X and Y. The coefficient of linear expansion $\alpha = 1.2 \times 10^{-5}/^\circ$C and Young's modulus $E = 2 \times 10^5$ MPa for steel:

When the temperature of this piece increases by 50 $^\circ$C, the stresses in sections A and B are

(a) 120 MPa and 480 MPa
(b) 60 MPa and 240 MPa
(c) 120 MPa and 120 MPa
(d) 60 MPa and 120 MPa

51. For a material following Hooke's law, the values of elastic and shear moduli are 3×10^5 MPa and 1.2×10^5 MPa respectively. The value for bulk modulus is

(a) 1.5×10^5 MPa
(b) 2×10^5 MPa
(c) 2.5×10^5 MPa
(d) 3×10^5 MPa
52. At a point in a body, $\varepsilon_1 = 0.0004$ and $\varepsilon_2 = -0.00012$. If $E = 2 \times 10^5$ MPa and $\mu = 0.3$, the smallest normal stress and the largest shearing stress are
(a) 40 MPa and 40 MPa
(b) 0 MPa and 40 MPa
(c) 80 MPa and 0 MPa
(d) 0 MPa and 80 MPa

53. A cantilever of length 1.2 m carries a concentrated load of 12 kN at the free end. The beam is of rectangular cross-section with breadth equal to half the depth. The maximum stress due to bending is not to exceed 100 N/mm². The minimum depth of the beam should be
(a) 120 mm
(b) 60 mm
(c) 75 mm
(d) 240 mm

55. A beam ABCD, 6 m long is supported at B and C, 3 m apart with overhangs AB = 2 m and CD = 1 m. It carries a uniformly distributed load of 100 kN/m over its entire length:

![Diagram of cantilever beam with distributed load](image)

The maximum magnitudes of bending moment and shear force are
(a) 200 kN-m and 250 kN
(b) 200 kN-m and 250 kN
(c) 50 kN-m and 200 kN
(d) 50 kN-m and 250 kN

56. A solid circular cross-section cantilever beam of diameter $d = 100$ mm carries a shear force of 10 kN at the free end. The maximum shear stress is
(a) $\frac{4}{3\pi}$ Pa
(b) $\frac{3\pi}{4}$ Pa
(c) $\frac{3\pi}{16}$ Pa
(d) $\frac{16}{3\pi}$ Pa

57. A beam of length L simply supported at its ends carrying a total load W uniformly distributed over its entire length deflects at the centre by δ and has a maximum bending stress σ. If the load is substituted by a concentrated load W_1 at mid-span such that the deflection at the centre remains unchanged, the magnitude of the load W_1 and the maximum bending stress will be
(a) $0.3W$ and 0.3σ
(b) $0.6W$ and 0.6σ
(c) $0.3W$ and 0.6σ
(d) $0.6W$ and 0.3σ
58. For a rectangular section beam, if the width, length and loading are doubled, keeping the beam depth the same, the bending stress is decreased by a factor
(a) 2
(b) 4
(c) 6
(d) 8

59. A helical compression spring of stiffness \(K \) is cut into two pieces, each having equal number of turns and kept side by side under compression. The equivalent spring stiffness of this new arrangement is equal to
(a) \(4K \)
(b) \(2K \)
(c) \(K \)
(d) \(0.5K \)

60. A beam \(AB \) simply supported at its ends \(A \) and \(B \), 3 m long, carries a uniformly distributed load of 1 kN/m over its entire length and a concentrated load of 3 kN, at 1 m from \(A \):

If ISJB 150 with \(I_{xx} = 300 \text{ cm}^4 \) is used for the beam, the maximum value of bending stress is
(a) 75 MPa
(b) 85 MPa
(c) 125 MPa
(d) 250 MPa

61. Copper has FCC structure: its atomic radius is 1.28 Å and atomic mass is 63.5. The density of copper will be
(a) \(8.9 \times 10^3 \text{ kg/m}^3 \)
(b) \(8.9 \times 10^3 \text{ kg/cm}^3 \)
(c) \(8.9 \times 10^3 \text{ kg/m}^3 \)
(d) \(8.9 \times 10^3 \text{ g/mm}^3 \)

62. A plane intersects the coordinate axes at \(x = \frac{2}{3} \), \(y = \frac{1}{3} \) and \(z = \frac{1}{2} \). What is the Miller index of this plane?
(a) 932
(b) 432
(c) 423
(d) 364

63. What is the diameter of the largest sphere in terms of lattice parameter \(a \), which will fit the void at the centre of the cube edge of a BCC crystal?
(a) \(0.134a \)
(b) \(0.25a \)
(c) \(0.433a \)
(d) \(0.5a \)

64. If the atomic radius of aluminium is \(r \), what is its unit cell volume?
(a) \(\left(\frac{2r}{\sqrt{2}} \right)^3 \)
(b) \(\left(\frac{4r}{\sqrt{2}} \right)^3 \)
(c) \(\left(\frac{2r}{\sqrt{3}} \right)^3 \)
(d) \(\left(\frac{4r}{\sqrt{3}} \right)^3 \)
65. Consider the following statements regarding the behaviour of dislocations:
1. Only edge dislocation and mixed dislocation can have glide motion.
2. A screw dislocation cannot have glide motion.
3. Dislocation moves in the direction perpendicular to that of stress.
4. Motion of dislocation occurs on slip plane that contains Burger's vector and direction vector.

Which of the above statements are correct?
(a) 1, 2 and 3 only
(b) 1, 2 and 4 only
(c) 2, 3 and 4 only
(d) 1, 2, 3 and 4

66. A binary alloy of Cu and Ni containing 20 wt% Ni at a particular temperature coexists with solid phase of 26 wt% Ni and liquid phase of 16 wt% Ni. What is the weight ratio of solid phase and liquid phase?
(a) 1:1
(b) 3:2
(c) 2:3
(d) 1:2

67. Elements A and B form eutectic type binary phase diagram and the eutectic composition is 60 wt% B. If just below eutectic temperature, the eutectic phase contains equal amounts (by wt) of two solid phases, then the compositions of the two solid phases are
(a) 20 wt% B and 90 wt% B
(b) 30 wt% B and 90 wt% B
(c) 20 wt% B and 80 wt% B
(d) 30 wt% B and 80 wt% B

68. Consider the following statements:
In a binary phase diagram
1. the freezing point of the alloy is minimum.
2. eutectic mixture solidifies at a constant temperature like pure metal
3. eutectic reaction is irreversible
4. at eutectic temperature, liquids of two metals will change into two solids

Which of the above statements are correct?
(a) 1, 2 and 3 only
(b) 1, 3 and 4 only
(c) 1, 2 and 4 only
(d) 1, 2, 3 and 4

65. At room temperature, α-iron contains negligible amount of carbon, cementite contains 6.67% C and pearlite contains 0.8% C. Pearlite contains how much cementite?
(a) 8%
(b) 10%
(c) 12%
(d) 14%

70. Two metals A and B are completely immiscible in solid and liquid state. Melting point of A is 800 °C and melting point of B is 600 °C. They form eutectic at 200 °C with 40% B and 60% A. The 50% B alloy contains
(a) 83.33% of A and 16.67% of eutectic
(b) 83.33% of eutectic and 16.67% B
(c) 50% B and 50% of eutectic
(d) 40% B and 60% of eutectic
71. What is the interplanar spacing between (200), (220), (111) planes in an FCC crystal of atomic radius 1.246 Å?
 (a) \(d_{(200)} = 1.762 \, \text{Å}, \ d_{(220)} = 1.24 \, \text{Å} \) and \(d_{(111)} = 2.034 \, \text{Å} \)
 (b) \(d_{(200)} = 1.24 \, \text{Å}, \ d_{(220)} = 1.762 \, \text{Å} \) and \(d_{(111)} = 2.034 \, \text{Å} \)
 (c) \(d_{(200)} = 2.034 \, \text{Å}, \ d_{(220)} = 1.24 \, \text{Å} \) and \(d_{(111)} = 1.762 \, \text{Å} \)
 (d) \(d_{(200)} = 2.5 \, \text{Å}, \ d_{(220)} = 4.2 \, \text{Å} \) and \(d_{(111)} = 2.6 \, \text{Å} \)

72. Rotary swaging is a process for shaping
 (a) round bars and tubes
 (b) billets
 (c) dies
 (d) rectangular blocks

73. Consider the following statements:
 In shell moulding
 1. a single parting plane should be provided for mould
 2. detachable pattern parts and cores could be included
 3. minimum rounding radii of 2.5 mm to 3 mm should be used
 4. draft angles of not less than 1° should be used
 Which of the above statements are correct?
 (a) 1, 3 and 4 only
 (b) 1, 2 and 3 only
 (c) 2, 3 and 4 only
 (d) 1, 2, 3 and 4

74. A big casting is to have a hole, to be produced by using a core of 10 cm diameter and 200 cm long. The density \(\rho_{\text{metal}} \) is \(0.077 \, \text{N/cm}^3 \) and density \(\rho_{\text{core}} \) is \(0.0165 \, \text{N/cm}^3 \). What is the upward force acting on the core prints?
 (a) 200.5 N
 (b) 1100.62 N
 (c) 950.32 N
 (d) 350.32 N

75. Consider the following:
 The purpose of lapping process is
 1. to produce geometrically true surface
 2. to correct minor surface imperfections
 3. to improve dimensional accuracy
 4. to provide very close fit between the contact surfaces
 Which of the above are correct?
 (a) 1, 2 and 3 only
 (b) 1, 3 and 4 only
 (c) 2, 3 and 4 only
 (d) 1, 2, 3 and 4

75. Centre lathe is to be used to cut inch thread of 4 threads per inch. Lead screw of lathe has 3 mm pitch. Then change gear to be used is
 (a) \(\frac{1}{12} \)
 (b) \(\frac{127}{60} \)
 (c) \(\frac{30}{127} \)
 (d) \(\frac{20}{80} \)

77. Consider the following statements in respect of the oxidizing flame due to excess of oxygen in welding:
 1. At high temperature, it combines with many metals to form hard and brittle oxides.
 2. It causes the weld bead and the surrounding area to have a scummy appearance
 3. It has good welding effect in welding of copper-base metal.
 Which of the above statements are correct?
 (a) 1, 2 and 3
 (b) 1 and 2 only
 (c) 1 and 3 only
 (d) 2 and 3 only
78. A cutter tip is initially at \(X = 10 \text{ mm}, Y = 20 \text{ mm} \). In a rapid motion, using code \(\text{C00} \), it moves to \(X = 160 \text{ mm}, Y = 120 \text{ mm} \). The \(X \) and \(Y \) axes have maximum speed of 10000 mm/min and 5300 mm/min respectively. Operating at maximum speed, what is the time it will take to reach the destination?

(a) 0.90 s
(b) 1.08 s
(c) 1.20 s
(d) 2.16 s

79. If \(r = 0.5 \) and \(C = 300 \) for the cutting speed and tool life relation, when cutting speed is reduced by 25\%, the tool life will be increased by

(a) 100\%
(b) 95\%
(c) 78\%
(d) 55\%

80. Which of the following statements are correct for temperature rise in metal-cutting operation?

1. It adversely affects the properties of tool material.
2. It provides better accuracy during machining.
3. It causes dimensional changes in workpiece and affects accuracy of machining.
4. It can distort the accuracy of machine tool itself.

(a) 1 and 2
(b) 2 and 3
(c) 3 and 4 only
(d) 1, 3 and 4

81. Which of the following statements apply to provision of flash gutter and flash land around the parts to be forged?

1. Small cavities are provided which are directly outside the die impression.
2. The volume of flash land and flash gutter should be about 20\% - 25\% of the volume of forging.
3. Gutter is provided to ensure complete closing of the die.

(a) 1 and 2 only
(b) 1 and 3 only
(c) 1, 2 and 3
(d) 2 and 3 only

82. A hole and a shaft have a basic size of 25 mm, and are to have a clearance fit with a maximum clearance of 0.02 mm and a minimum clearance of 0.01 mm. The hole tolerance is to be 1.5 times the shaft tolerance. The limits of both hole and shaft using hole basis system will be

(a) low limit of hole = 25 mm, high limit of hole = 25.006 mm, upper limit of shaft = 24.99 mm and low limit of shaft = 24.986 mm
(b) low limit of hole = 25 mm, high limit of hole = 25.025 mm, upper limit of shaft = 24.8 mm and low limit of shaft = 24.75 mm
(c) low limit of hole = 24 mm, high limit of hole = 25.006 mm, upper limit of shaft = 25 mm and low limit of shaft = 24.99 mm
(d) low limit of hole = 25.006 mm, high limit of hole = 25 mm, upper limit of shaft = 24.93 mm and low limit of shaft = 25 mm.
83. Consider the following statements:

1. the difference between hole size and shaft size is called allowance.
2. in transition fit, small positive or negative clearance between the shaft and hole member is employable.

Which of the above statements is/are correct?
(a) 1 only
(b) Both 1 and 2
(c) 2 only
(d) Neither 1 nor 2

84. An organization has decided to produce a new product. Fixed cost for producing the product is estimated as ₹ 1,00,000. Variable cost for producing the product is ₹ 100. Market survey indicated that the product selling price could be ₹ 200.

The break-even quantity is
(a) 1000 (b) 2000
(c) 500 (d) 900

85. Using exponential smoothening, a car manufacturing company predicted the demand for that year as 1040 cars. The actual sale was found to be 1140 cars. If the company's forecast for the next year is 1080, what is the value of the smoothening constant?
(a) 0.4 (b) 0.6
(c) 0.7 (d) 1.2

86. Coarse feed, low rake angle, low cutting speed and insufficient cooling help produce
(a) continuous chips in ductile materials
(b) discontinuous chips in ductile materials
(c) continuous chips with built-up edges in ductile materials
(d) discontinuous chips in brittle materials

87. In NC machining, co-ordinated movement of separately driven axes motion is required to achieve the desired path of tool relative to workpiece. The generation of these reference signals is accomplished through a device called
(a) approximator
(b) interpolator
(c) coordinator
(d) director

88. A part is made from solid brass rod of 38 mm diameter and length 25 mm. The machining time taken to finish the part is 90 minutes and labour rate is ₹ 2 per hour. Factory overheads are 50% of direct labour cost. The density of material is 8.6 gms per cubic cm and its cost is ₹ 1.625 per newton. The factory cost of the part will be
(a) ₹ 8.40 (b) ₹ 4.80
(c) ₹ 14.80 (d) ₹ 18.40

89. A company wants to expand the solid propellant manufacturing plant by the addition of more than 1 ton capacity curing furnace. Each ton of propellant must undergo 30 minutes of furnace time including loading and unloading operations. Furnace is used only 50 percent of the time due to power restrictions. The required output for the new layout is to be 16 tons per shift (3 hours). Plant (system) efficiency is estimated at 50% percent of system capacity. The number of furnaces required will be
(a) 3 (b) 2
(c) 1 (d) 4
90. The purpose of providing side rake angle on the cutting tool is to

(a) avoid work from rubbing against tool

(b) control chip flow

(c) strengthen tool edge

(c') break chips

91. The annual demand of a commodity in a supermarket is 80000. The cost of placing an order is ₹ 4,000 and the inventory cost of each item is ₹ 40. What is the economic order quantity?

(a) 2000

(b) 4000

(c) 5656

(d) 6666

92. Consider the following statements:

In a single-server queueing model

1. the arrivals is a memoryless process

2. the arrivals is described as a Poisson distribution

3. uncertainty concerning the demand for service exists

Which of the above statements are correct?

(a) 1 and 2 only

(b) 1 and 3 only

(c) 1, 2 and 3

(d) 2 and 3 only

93. To construct an operating characteristic curve, an agreement has to be reached between producer and consumer through which of the following points?

1. Maximum proportion of defectives that will make the lot definitely unacceptable

2. The producer is willing to accept that some of satisfying the quality level (AQL) will be rejected (α = 5%)

3. Maximum level of percentage defectives that will make the lot definitely unacceptable

4. The consumer is willing to take lots of quality level (LTPD) even though they are unacceptable (β = 10%)

(a) 1, 2 and 3 only

(b) 1, 2, 3 and 4

(c) 1, 2 and 4 only

(d) 2, 3 and 4 only

94. Assuming X and Y are the two control variables, the following are the constraints laid out for maximizing the profit:

Maximize profit $P = 3X - 5Y$

subject to

Constraint-1 : $2X + 7Y \leq 1000$

Constraint-2 : $3X + 5Y \leq 2400$

Constraint-3 : $X + Y \leq 80$

Constraint-4 : $X - Y \leq 35$

Constraint-5 : $X \geq 0$

Constraint-6 : $Y \geq 0$

Which of the above constraints is a redundant one and does not have any effect on the solution?

(a) Constraint-1

(b) Constraint-3

(c) Constraint-4

(d) Constraint-5 and Constraint-6
95. A transportation problem consists of 3 sources and 5 destinations with appropriate rim conditions. The number of possible solutions is
 (a) 15 (b) 225
 (c) 6435 (d) 150

96. Maximize \(Z = 2X_1 + 3X_2 \)
 subject to
 \[\begin{align*}
 2X_1 + X_2 & \leq 6 \\
 X_1 - X_2 & \geq 3 \\
 X_1, X_2 & \geq 0
 \end{align*} \]

The solution to the above LPP is
 (a) optimal
 (b) infeasible
 (c) unbounded
 (d) degenerate

97. A company has a store which is manned by 1 attendant who can attend to 8 technicians in an hour. The technicians wait in the queue and they are attended on first-come-first-served basis. The technicians arrive at the store on an average 6 per hour. Assuming the arrivals to follow Poisson and servicing to follow exponential distribution, what is the expected time spent by a technician in the system, what is the expected time spent by a technician in the queue and what is the expected number of technicians in the queue?
 (a) 22.5 minutes, 30 minutes and 2.75 technicians
 (b) 30 minutes, 22.5 minutes and 2.25 technicians
 (c) 22.5 minutes, 22.5 minutes and 2.75 technicians
 (d) 30 minutes, 30 minutes and 2.25 technicians

98. Objective function
 \[Z = 5X_1 + 4X_2 \quad \text{(Maximize)} \]
 subject to
 \[\begin{align*}
 0 \leq X_1 & \leq 12 \\
 0 \leq X_2 & \leq 9 \\
 3X_1 + 6X_2 & \leq 55 \\
 X_1, X_2 & \geq 0
 \end{align*} \]

What is the optimum value?
 (a) 6, 9
 (b) 12, 5
 (c) 4, 10
 (d) 0, 9

99. Which of the following defines the compiler's function correctly?
 (a) It translates high-level language programs into object code
 (b) It translates object code into a high-level language
 (c) It translates object code into assembly language instructions
 (d) It translates assembly language instructions into object code

100. Which one of the following properties of work materials is responsible for the material removal rate in electrochemical machining?
 (a) Hardness
 (b) Atomic weight
 (c) Thermal conductivity
 (d) Ductility
Directions: Each of the following twenty (20) items consists of two statements, one labelled as ‘Statement (I)’ and the other as ‘Statement (II)’. Examine these two statements carefully and select the answers to these items using the codes given below.

Codes:

(a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I)

(b) Both Statement (I) and Statement (II) are individually true but: Statement (II) is not the correct explanation of Statement (I)

(c) Statement (I) is true but Statement (II) is false

(d) Statement (I) is false but Statement (II) is true

101. Statement (I):
The cam in contact with a follower is a case of complete constraint.

Statement (II):
The pair, cam and follower, by itself does not guarantee continuity of contact all the time.

102. Statement (I):
Involute pinions can have any number of teeth.

Statement (II):
Involute profiles in mesh satisfy the constant velocity ratio condition.

103. Statement (I):
Hooke's joint connects two non-parallel non-intersecting shafts to transmit motion with a constant velocity ratio.

Statement (II):
Hooke's joint connects two shafts the axes of which do not remain in alignment while in motion.

104. Statement (I):
Levis equation for design of involute gear tooth predicts the static load capacity of a cantilever beam of uniform strength.

Statement (II):
For a pair of gears in mesh, pressure angle and module must be same to satisfy the condition of interchange-ability and correct gearing.

105. Statement (I):
Tensile strength of CI is much higher than that of MS.

Statement (II):
Percentage of carbon in CI is more than 1.5.
106. Statement (I):
Centrifugal clutches are designed to provide automatic and smooth engagement of a load to driving member.

Statement (II):
Since the operating centrifugal force is a function of square of angular velocity, the friction torque for accelerating a load is also a function of square of speed of driving member.

107. Statement (I):
Heating the steel specimen in the furnace up to austenitize temperature followed by furnace cooling is termed annealing.

Statement (II):
Annealed steel specimen possesses fine pearlitic structure.

108. Statement (I):
The susceptibility of a ferromagnetic material decreases with an increase in Curie temperature.

Statement (II):
A critical temperature at which the alignment of magnetic moments vanishes is called Curie temperature.

109. Statement (I):
Fiberglass is a polymer composite made of a plastic matrix containing fine fibers of glass.

Statement (II):
Fiberglass acquires strength from the polymer and flexibility from the glass.

110. Statement (I):
Industrial rotors will not have uniform diameter throughout their lengths.

Statement (II):
These rotors will have to accommodate transmission elements like pulleys and gears and supports like anti-friction bearings.

111. Statement (I):
Cored induction furnace cannot be used for intermittent operation.

Statement (II):
Cored induction furnace, though most efficient, requires a liquid metal charge while starting.

112. Statement (I):
Low-carbon steel has high weldability and is more easily welded.

Statement (II):
Higher carbon content tends to soften the welded joints resulting in development of cracks.

113. Statement (I):
For cutting multi-start threads, the speed ratio is expressed in terms of the lead of the job thread and lead of the lead screw threads.

Statement (II):
The speed of the job is reduced to one-third or one-fourth of the job speed used in the turning operation.
114. Statement (I):
The Bauschinger effect is observed in tension test of mild steel specimen due to loss of mechanical energy during local yielding.

Statement (II):
The Bauschinger effect is a function of section modulus of specimen under test.

115. Statement (I):
The ceramic tools used in machining of material have highly brittle tool tips.

Statement (II):
Ceramic tools can be used on hard-to-machine work material.

116. Statement (I):
In chain drives, angle of articulation through which link rotates during engagement and disengagement, is greater for a small number of teeth.

Statement (II):
The greater angle of articulation will increase the life of the chain.

117. Statement (I):
The CNC is an NC system utilizing a dedicated stored program to perform all numerical control functions in manufacturing.

Statement (II):
The CNC is a manufacturing process in which a number of process machines are controlled by a computer through direct connection and real-time analysis.

118. Statement (I):
In interference fit, the outer diameter of the shaft is greater than the inner diameter of the hole.

Statement (II):
The amount of clearance obtained from the assembly of hole and shaft resulting in interference fit is called positive clearance.

119. Statement (I):
One of the most commonly used techniques for testing surface integrity of material is metallography.

Statement (II):
Surface integrity of a material does not contribute for the mechanical and metallurgical properties.

120. Statement (I):
The change in critical path requires rescheduling in a PERT network.

Statement (II):
Some of the activities cannot be completed in time due to unexpected breakdown of equipment or non-availability of raw materials.
SPACE FOR ROUGH WORK